New Members & Postdoc Hiring Announcement

Garg Group warmly welcomes new members who started in Summer and Fall 2021. These are MS candidates: Jacob Doehring, Dhanush Sahasra, Andrew Witte; PhD candidates: Bayezid Baten, Chirayu Kothari, Hyeonseok Jee, Brandy Diggs-McGee; and Postdoc: Dr. Hamza Samouh. Additionally, MS candidate Vikram Kumar successfully completed his MS thesis in Summer 2021 and continues in the group as a new PhD candidate, starting Fall 2021.

Group photo in the North Quad of the UIUC campus on an early Fall morning, before heading to the group meeting. (From left to right; Top row: PR, GS, CK, RS, AW, HS, OA, BDM, VK, HK; Bottom row: FQ, DS, BB, KCP, NG, HJ, SS, MG, NH, JD)

Mulitple openings for graduate students (both at MS and PhD level) are available for Fall 2022. Please apply and join us!

Additionally, a postdoc position has also just opened in our group. Please apply before Feb 21, 2022. Job details and application info is in the file below:.

New Publication on Reactivity of Incineration Ashes

A new publication titled “The Chemical and Physical Origin of Incineration Ash Reactivity in Cementitious Systems” was published in Resources, Conservation and Recycling in October 2021.

Incorporating industrial byproducts and waste in concrete is the key to reducing landfill usage as well as lowering the environmental footprint of cement industry. An emerging industrial byproduct which can partly replace cement is the Municipal Solid Waste Incinerator Ash (MSWI ash: residue that is left after incineration of municipal solid waste in a Waste-to-Energy facility). These ashes are predominantly calcium-rich; however, they also contain additional elements whose speciation is not known. These elements can significantly alter the hydration characteristics of a cementitious system. Our initial foray into cementitious matrices including these ashes, reveals that these ashes can  accelerate as well as retard  cement hydration. Specifically, Pb, Br, S, Ca, and Cl appear to accelerate cement hydration, whereas Cu, Fe, Al, Ti, Si, K, Zn, and Sr appear to retard cement hydration. Changes in hydration characteristics can have a strong bearing on the physical characteristics of cementitious systems incorporating incineration ashes. Thus, to selectively screen ashes that synergistically enhance the physical characteristics, we introduce a novel “Incineration Ash Coefficient (IAC),” which shows a strong correlation with the compressive strength (R2=0.79) of cement-ash binary mixtures.

This is the first article from our group’s Ph.D. candidate Vikram Kumar. Congratulations Vikram!

The article can be accessed here.

Research Funding on Municipal Solid Waste Incineration Ashes

Given the growing world population and urban density, management of municipal solid waste is becoming an increasingly difficult issue. One way to approach handling of all this solid waste is to incinerate it for energy as is done in Waste-to-Energy plants. However, the residual ash (bottom and fly ash) post combustion of this waste is unused and often sent to the landfill. There is potential in utilizing this ash for several commercial applications if its chemical composition and mineralogy could be understood in detail.

SEM image of an ash sample which is a complex mixture of multiple amorphous and crystalline phases with a distinct morphology.

Garg Group has recently received funding from Advanced Research Projects Agency – Energy (ARPA-E) for a two year project (2021-2023) for investigating the chemistry of these ashes and then identifying composition dependent end uses. The project is titled RADAR-X (Rapid AI-based Dissection of Ashes using Raman and XRF Spectroscopy). This is an interdisciplinary project in collaboration with Prof. Jeffery Roesler, Dr. Brajendra K. Sharma, and Prof. Lav Varshney. This project will build upon the findings from an earlier project on municipal solid waste which was seed funded by the Institute for Sustainability, Energy, and Environment at University of Illinois, Urbana-Champaign. Some more information on this new project can be found here.

We are excited to continue our efforts in this field to make our world a sustainable world!

New Publication on Raman Imaging of Anhydrous Cements

A new publication titled “Enabling Phase Quantification of Anhydrous Cements via Raman Imaging” was published in Cement and Concrete Research in September 2021.

Quantifying the mineral phase composition of an anhydrous cement is essential in determine/predicting the hydrated phase assemblage which consequently governs the overall performance of hardened concrete. Traditional techniques such as X-ray diffraction, optical microscopy, and electron microscopy are well suited to quantify phases in anhydrous cements but they may have some sample-specific limitations in certain scenarios. Here, we demonstrate Raman imaging as a complementary tool for quantitative phase analysis on 11 different cements. Using sufficient statistics (250,000 spectra per image, 5×5 mm area scans with 10 μm/pixel in each image), we were able to accurately quantify the 4 principal phases (alite, belite, aluminate, and ferrite) as well as (up to) 8 secondary phases (gypsum, anhydrite, bassanite, syngenite, dolomite, calcite, quartz, and portlandite) in a broad variety of cements. These results pave the way for future application of Raman imaging for phase quantification in other complex mixtures and systems.

This is the second article from our group’s Ph.D. candidate Krishna C. Polavaram. Congratulations Krishna! 

The article can be accessed here.

Garg Group Annual Picnic (G-GAP) 2021

The first version of G-GAP ’21 was launched in July 2021 where the group spent a day eating and relaxing outdoors. Participation was free for all group members, however, everyone was required to bring a dish for the potluck in lieu of their registration fee. This resulted in a rather extensive buffet-style feast which lifted everyone’s spirits as shown in Figure 1.

Figure 1: Illustration of happy faces of picnic attendees upon consumption of a highly diverse and international cuisine. (Initials, L to R – Top Row: NG, BB, OA, PK, HK, PC, JD; Bottom Row: SS, FQ, KP, RS, VK)

Once the attendees were motivated, they were assembled to execute the real purpose of this picnic: creating some fun memories! The group tried making several creative shots but most of them turned out to be not publishable. One of them, where the group attempts to create an “I” on the ground (reported here as Video 1), survived the editorial cut.

Video 1

Nevertheless, the group will continue to try to generate new content in the meanwhile and will be back next year, in summer 2022. Thanks for reading and watching.

Garg wins the Stephen Brunauer Award

Professor Garg has been recently awarded the prestigious Stephen Brunauer Award from the Cements Division of the American Ceramic Society. The award was presented to Prof. Garg and Prof. Jørgen Skibsted (Garg’s former Ph.D. advisor at Aarhus University, Denmark) for their 2019 article titled “Dissolution kinetics of calcined kaolinite and montmorillonite in alkaline conditions: evidence for reactive Al (V) sites” published in the Journal of the American Ceramic Society.

A graphic summary of the 2019 article that led to the award. Understanding factors influencing dissolution of calcined clays is important in our quest to develop the next generation of sustainable cements.

The announcement was made at the 11th Advances in Cement-Based Materials Conference held virtually last week (June 23-25, 2021). This award is given every year to the author(s) of the best-refereed paper published in the previous calendar year in the Bulletin or the Journal of the American Ceramic Society.

This award honors Dr. Stephen Brunauer (1903-1986), a surface scientist and chemist, who is best known for his BET (Brunauer, Emmett, and Teller) paper on “Adsorption of Gases in Multi-Molecular Layers” published in the Journal of the American Chemical Society in 1938. The BET method is one of the most widely used methods for measuring the specific surface area of porous as well as powdered materials. Dr. Brunauer also made significant contributions to our microstructural understanding of cement hydrates.

A list of previous awardees can be found below:

New Publication on Raman Imaging of Granites

A new publication titled “High-fidelity and high-resolution phase mapping of granites via confocal Raman imaging” was published in Scientific Reports in April 2021.

Granites are one of the most abundant silicates on Earth’s crust, and they can often be found in concrete mixtures where siliceous aggregates have been used. Understanding the mineral phase composition of these complex rocks is a key requirement to predict their tolerance to long-term radiation in a nuclear power plant. However, obtaining accurate phase maps from traditional petrographic methods as well as newer elemental mapping methods has a series of limitations. Here, we report a methodology that allows direct mineralogical mapping and fingerprinting using Raman spectroscopy and imaging. Our results enable high-resolution and high-fidelity spatial mapping of minerals at the sub-micron scale, opening up pathways to rapidly assess and quantify the mineralogical composition of samples that require minimal sample preparation.

This is the first article from our group’s Ph.D. candidate Krishna C. Polavaram. Congratulations Krishna!

The article can be accessed here.

New Graduate Students – Spring 2021

Garg Group warmly welcomes new set of graduate students who started recently as research assistants in the Spring 2021 semester. They are Ravi Sharma (MS candidate) and Omar Abdelrahman (MS candidate) who joined us in January, 2021.

Group photo in the North Quad of the UIUC campus on a nice afternoon, before heading to the group meeting. (From left to right; Top row: Vikram Kumar, Ravi Sharma, Prof. Garg, Omar Abdelrahman, Pablo R. Contreras; Bottom row: Sonali Srivastava, Krishna C. Polavaram, Hossein Kabir, Faisal Qadri; Missing: Pratyush Kumar)

We’re looking forward to welcome the next set of students arriving this Fall 2021. We expect several openings in the Spring 2022 and/or Fall 2022 semesters, hence applications for the next year are welcome.

Seed Funding on Self-Healing Concrete

Over time, concrete pavements can be subject to cracking and deterioration. One approach to avoid these cracks is to employ a self-healing concrete that can repair on its own. However, several challenges remain before an effective and reliable self-healing concrete system can be deployed in the field.

Garg Group has recently received seed funding from the STII (Smart Transportation Infrastructure Initiative) which is currently developing the I-ACT (Illinois Autonomous and Connected Track, see video below). We will be working in collaboration with Prof. Ramez Hajj from the Transportation Engineering area within the Department of Civil and Environmental Engineering at UIUC.

Overview of I-ACT located at the village of Rantoul, Illinois. (Source: Video embedded from the STII website)

We are excited to venture into the field of self-healing materials!

Postdoc Hiring Announcement

Our group is actively looking to hire a Postdoctoral Research Associate to start working from early 2021. If you’re interested, please refer to the job advertisement.

The deadline to apply is Nov. 30, 2020. Early applications are highly encouraged.

Update: The position has been filled as of June 2021.