New Publication on Alkali-Activation of Metakaolin

A new publication titled “Impact of Na/Al Ratio on the Extent of Alkali-Activation Reaction: Non-linearity and Diminishing Returns” was published in Frontiers in Chemistry in January 2022.

A snapshot of results from 27Al MAS NMR of various AAM mixtures, illustrating a direct effect of the overall Na/Al ratio on the local Al environments.

To address the high CO2 footprint associated with cement production, many alternative, sustainable binders are now gaining worldwide attention, including alkali-activated materials (AAM). The alkali-activation reaction of metakaolin is a fairly complex process involving transformation of one amorphous reactant (precursor metakaolin) into another amorphous product or products (N-A-S-H gel and/or disordered zeolite type phases). In spite of this complexity, researchers in the past 2 decades have gained significant knowledge on the nature of this reaction at multiple scales. Understanding and developing a clear relationship between the alkalinity of the mix and the extent of reaction is of high interest for practical applications. However, detailed and thorough investigations on this important relationship are limited. Here, in this study, we address this gap by systematically investigating a series of alkali-activated materials samples with a wide range of Na/Al ratios (0.5–1.8) using seven different yet complementary analytical techniques (isothermal calorimetry, FTIR, XRD, TGA, 27Al and 23Na NMR, and Raman imaging). Applied in tandem, these tools reveal a clear but non-linear relationship between the Na/Al ratio and the extent of alkali-activation reaction indicating diminishing returns at higher Na/Al ratios, where higher Na/Al ratios cause an increase in the degree of reaction until a certain point at which the increase in Na/Al ratio does not significantly affect the reaction kinetics, but may affect the gel polymerization. These findings could potentially aid decision making for commercial applications of AAMs where alkalinity of the mix is an important parameter for performance as well as safety.

This is the first article from our group’s MS candidate Omar Abdelrahman. Congratulations Omar!

The article can be accessed here.

Leave a Reply